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Abstract

Partial occlusion is a challenging problem in object
tracking. In online visual tracking, it is the critical factor
causing drift. To address this problem, we propose a novel
approach using a co-training framework of generative and
discriminative trackers. Our approach is able to detect the
occluding region and continuously update both the genera-
tive and discriminative models using the information from
the non-occluded part. The generative model encodes all of
the appearance variations using a low dimension subspace,
which helps provide a strong reacquisition ability. Mean-
while, the discriminative classifier, an online support vector
machine, focuses on separating the object from the back-
ground using a Histograms of Oriented Gradients (HOG)
feature set. For each search window, an occlusion likeli-
hood map is generated by the two trackers through a co-
decision process. If there is disagreement between these
two trackers, the movement vote of KLT local features is
used as a referee. Precise occlusion segmentation is per-
formed using MeanShift. Finally, each tracker recovers the
occluded part and updates its own model using the new non-
occluded information. Experimental results on challenging
sequences with different types of objects are presented. We
also compare with other state-of-the-art methods to demon-
strate the superiority and robustness of our tracking frame-
work.

1. Introduction

Visual tracking is an important and challenging problem
in computer vision with various practical applications such
as surveillance, robotics, human-computer interfaces. One
of the difficult issues is the appearance changes which may
come from varying viewpoints and illumination conditions.
Moreover, they can be also caused by partial occlusion, a
very challenging problem. In this paper, we aim to track
an arbitrary object with partial occlusion handling using

(a) Some partial occlusion cases (b) Occlusion segmentation

Figure 1. Partial occlusion cases and occlusion segmentation

very limited initial labeled data. The appearance models are
learned online using both a generative and a discriminative
tracker.

Discriminative methods focus on finding a decision
boundary to separate the object from the background [9,
3, 2]. Generative trackers instead only aim at encoding the
target appearance. Examples are the histogram-based meth-
ods [1, 17] which are simple but effective at solving tracking
problems. Another way of building a generative appearance
model is to use linear subspaces [21, 13] which gains lots
of interest from researchers.

It is established that discriminative classifiers obtain bet-
ter performance than generative models if there is enough
training data [12]. However, generative methods have
higher generalization when limited data is provided [18].
One intuitive way of improving discriminative and genera-
tive methods is to combine them together in a hybrid way.
Several methods [15, 28] have followed this trend by “dis-
criminative training” of a generative model. They optimize
a convex combination of the generative and discriminative
log likelihood functions to obtain the model. Co-training,
originally presented by Blum and Mitchell [4], is another
way to combine different classifiers and has been applied in
tracking [23, 29, 16].

However, very few methods explicitly address the par-
tial occlusion problem, which is the critical factor causing
drift in visual tracking using a single camera. Most of the
proposed algorithms try to avoid partial occlusion by us-
ing a threshold to stop updating the model whenever it hap-
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pens [9, 29]: When one updates the model with the object
appearance including occlusion, we learn the noise, i.e. the
occluding region. However, to determine such a threshold
is not easy and depends on each specific sequence, which
is not applicable in practice. Moreover, trying to avoid par-
tial occlusion limits the tracker from following the target af-
ter occlusion when its appearance gradually changes during
that time. This issue can be solved if we are able to detect
the occlusion, replace it with the learned information, and
continue updating our model. It helps the tracker to adapt to
the partial appearance changes without learning the noise.
Here, we assume that there is no abrupt appearance change
in the occluded part during occlusion.

To address this issue, Adam et al. [1] proposed
fragments-based tracker (Frag-Track) using integral his-
togram. The method simply splits the image patch into
rectangular sub-regions and keeps tracking them by using
spatial information and patch similarity measurements. Be-
cause only static appearance template and color information
(or gray-level information) are used, it is hard to tackle chal-
lenging sequences with object appearance changes, or clut-
tered background and distracters. Also, the method only
uses a simple rectangle representation with no scaling nor
rotation, which is not practical nor descriptive enough in
visual tracking. Pan and Hu [19] proposed a tracking algo-
rithm which analyzes the occlusion by exploiting the spa-
tiotemporal context information. The final decision is fur-
ther double checked by the reference targets and motion
constraints. Even though the performance of the tracker is
promising, it depends on several thresholds which are not
easy to set. Moreover, adaptive template matching, mainly
used by this approach, may not be sophisticated enough for
handling challenging situations with cluttered background.
Recently, Kalal et al. [11] proposed the P-N Tracker us-
ing positive and negative constraints to exploit the structure
of the data and get feedback about the performance of the
classifier; however, it cannot deal with partial occlusion ex-
plicitly. Not directly detecting the occlusion, MILTrack [3],
proposed by Babenko et al., learns multiple instances in an
online manner to avoid drifting problem. This method is in-
spired from Multiple Instance Boosting proposed by Viola
et al. [25], which considers a bag of samples labeled as posi-
tive if there is at least one positive sample, otherwise labeled
as negative. Like Frag-Track [1] and PNTracker [11], it
only uses simple rectangular shape without rotation. Mean-
while, Woodley et al. [27] proposed a tracking method us-
ing online feature selection and a local generative model
with occlusion handling. However, it cannot handle illumi-
nation changes because it uses a local generative model to
detect occlusion. Moreover, the method does not consid-
ered object rotation and is not extensively tested in different
environment and situations such as different types of object,
indoors and outdoors.

(a) Original (b) Discriminative (c) Generative

Figure 2. Partial occlusion observation on our trackers

(a) 1st image (b) KLT (c) Occlusion (d) Movement

Figure 3. KLT movement when occlusion occurs.

Inspired from the HOG-LBP detector with partial occlu-
sion handling proposed by Wang et al. [26], which has pro-
duced very impressive results on pedestrian detector, and
the co-trained generative and discriminative trackers [29]
(Co-Tracker) having presented very robust results we pro-
pose a co-training framework of generative and discrimi-
native trackers with partial occlusion handling. We make
an assumption that the appearance changes smoothly while
partial occlusions create abrupt changes. Our method will
show no improvement over others if this assumption is vio-
lated.

The contribution of our paper is three-fold: 1) We pro-
pose an occlusion detection method using both generative
and discriminative models; 2) The movement of local fea-
ture voting process is implemented to detect if the occlusion
appears; 3) An occlusion recovery and an online updating
step are proposed to update both generative and discrimina-
tive models based on the non-occluded part. It is important
to emphasize that the algorithm can deal with different types
of objects with very limited labeled data, i.e. the object be-
ing selected in the first frame only.

The rest of this paper is organized as follows. The
overview of our approach is presented in Section 2. The
details of the generative and discriminative trackers are de-
scribed in Section 3 and Section 4. The movement of local
feature voting process is then presented in Section 5. The
experiments are shown in Section 6, followed by conclu-
sions and future work.

2. Overview of our approach

2.1. Motivation

After studying the classification scores of the linear
SVM on the INRIA dataset [6, 7], Wang et al. [26] noted
that the densely extracted blocks of HOG feature in the oc-



cluded area uniformly respond to the linear SVM classifier
with negative inner products. Even though there is differ-
ence between detection and tracking, we observed the same
effect on tracking sequences with different types of objects
(Fig 2(b)). We also investigated the response of a generative
model under partial occlusion and observed that the resid-
ual error is much higher in the occluded area (Fig 2(c)).
Moreover, the strong edge between the object and the oc-
cluding area makes the majority of local features (here we
use KLT [22]) in the region to be later occluded move in the
same direction and displacement (Fig 3).

These observations allow us to design a framework to
detect occlusion.

2.2. Overview

The overview of our approach is illustrated in Fig 4. A
particle filter framework [10] is used for sampling to es-
timate the hidden state of the object given a sequence of
observations.

Denote st = [x, y, ρx, ρy, θ] as the state of the object
where (x, y) is the center of the tracking box, (ρx, ρy) is
the scale w.r.t the predefined size of the object, and θ is
the in-plane rotation angle. To avoid drifting, the tracker
needs to find the object with an accurate center position at
the right scale, rotation. At frame It, the result given by the
tracker is a cropped image determined by the state of the
tracked object. Let Ot = (o1, o2, ....ot) be the sequence of
observed image regions over time t, our goal is to find the
hidden state st. Assuming a Markovian state transition, a
recursive equation is applied to formulate the posterior:

p(st|Ot) ∝ p(ot|st)
∫

p(st|st−1)p(st−1|Ot−1)dst−1 (1)

where p(st−1|Ot−1) is the posterior distribution from all
the previous observations while p(ot|st) and p(st|st−1) are
the observation and transition model, respectively. The crit-
ical issue is to estimate the likelihood of the new observa-
tion given the posterior distribution. In our approach, the
likelihood comes from two independent models. One is the
generative model, a linear subspace, which is learned on-
line to encode the variations in appearance. The other is the
discriminative model which is also trained in online manner
using HOG feature set [6]. The co-training framework helps
these two models train each other from the beginning when
limited initialization is provided. Each model estimates the
occlusion likelihood of each block in a sample; and they
make the decision together. KLT features [22] are also gen-
erated and tracked in order to determine when occlusions
happen by detecting uncertain region through a movement
voting process. Because of the independence of these ob-
servers, the final likelihood result is the dot product of these
likelihood functions.

Figure 4. Overview of our approach

3. Discriminative tracker using online SVM

We adopt LASVM [5], an incremental online SVM, to
train a classifier to separate object from background. Here
we only discuss how to get the classifier score on each
block. For more details about the training scheme, see [5].

3.1. Conventional learning

The decision function of SVM [24] is

f(x) = β +
nsv∑

k=1

αkK(x, xk) (2)



where x is a sample and xk : k ∈ {1, 2, ..., nsv} are
the support vectors. K(x, xk) is the kernel function; and
β is the bias constant. Here, a linear kernel is used, which
means K(x, xk) is the inner scalar product of two vectors
in <n. To use the observation in Section 2, instead of com-
puting the classification score for the whole sample patch,
we compute that of each block to infer whether partial oc-
clusion occurs, and where it is. It is important to note that
we follow the way of splitting block when computing HOG
features.

Following the algorithm of Wang et al. [26], we review
the derivation to obtain the distribution of the bias constant
over each block, then formulate it in online manner to fit
into our training framework. Due to the linear characteris-
tics, when using linear kernel, Eq. 2 is rewritten as:

f(x) = β + XT .

nsv∑

k=1

αkxk = β + WT .X (3)

where W =
nsv∑

k=1

αkxk =






w̃1

...
w̃nblk




 is the weighted sum

of support vectors. Now we have to distribute the bias con-
stant β to each block Bi; so that the contribution score of
each block in the final classifier confidence score can be
computed after subtracting that local bias βi from the total
feature inner production over that block.

For consistency, we use the same notation as in [26]. Let
us denote x+

p as the set of HOG features of positive sam-
ples and x−

q as the set of HOG features of negative sam-
ples, where p = 1, ..., N+ (N+ is the number of positive
samples) and q = 1, ..., N−(N− is the number of negative
ones). B+

p;i and B−
q;i are denoted as the ith blocks of x+

p

and x−
q , respectively.

Let A = −S−

S+ where S− and S+ are the summation
classification scores of the positive and negative samples.

S+ =
N+
∑

p=1

f(x+
p ) = N+β +

N+
∑

p=1

nblk∑

i=1

w̃T
i .B+

p;i (4)

S− =
N−
∑

q=1

f(x−
q ) = N−β +

N−
∑

q=1

nblk∑

i=1

w̃T
i .B−

q;i (5)

From Eq. 4 and Eq. 10, with the factor A, we have:

AN+β + N−β +
nblk∑

i=1

w̃T
i .



A

N+
∑

p=1

B+
p;i +

N−
∑

q=1

B−
q;i



 (6)

which can be written as:

β = B

nblk∑

i=1

w̃T
i .



A

N+
∑

p=1

B+
p;i +

N−
∑

q=1

B−
q;i



 (7)

where B = − 1
A.N++N− . Now, we can have the distribution

of bias constant on each block:

βi = B.w̃T
i .



A

N+
∑

p=1

B+
p;i +

N−
∑

q=1

B−
q;i



 (8)

3.2. Online learning

Up to this point, βi is only calculated in off-line man-
ner when all the training samples, i.e. positive and nega-
tive ones, are known. Now we consider all of the notations
above is for the current trained model. Assuming we have
N+

new new positive samples and N−
new new negative ones.

Now we have N
′+ = N+ +N+

new and N
′− = N− +N−

new

are the new number of positive and negative samples in
total, respectively. Because of the independence between
blocks, S

′+ and S
′− are computed as follows:

S′+ =
N ′+
∑

p=1

f(x′
p
+) = N ′+β′ +

N ′+
∑

p=1

nblk∑

i=1

w̃′T
i .B′+

p;i (9)

S′− =
N ′−
∑

q=1

f(x′
q
−) = N ′−β′ +

N ′−
∑

q=1

nblk∑

i=1

w̃′T
i .B′−

q;i (10)

where β′ and w′
i are output of LASVM after online train-

ing new samples; B′+
p;i = B+

p;i + B+
new(p;i) and B′

q;i
− =

B−
q;i + B−

new(q;i) are the updated of ith blocks in positive
and negative samples, i.e. x′+

p and x′−
q , respectively. Fol-

lowing the same computation, we have A′ = −S′−

S′+ and
B′ = − 1

A′.N ′++N ′−

The new bias constant β′
i for each block is updated using

Eq. 8 with all updated parameters.
The occlusion likelihood map is generated as a binary

image based on the score of each block , which is 0 if the
score is negative and 1, otherwise. Each pixel in the likeli-
hood image corresponds to a block in the sample.

3.3. Updating the model

As discussed in Section 2, if the classifier is updated in-
cluding the occluding region, it may drift because the noise
(occluding area) becomes part of the model. To avoid this
issue, the non-occluded part is kept while the occluded area
is inferred from a previous frame (as shown in Figure 5(c)).
In a long-term partial occlusion, we can consider this step as
a recursive process where the occluded area of the object in
the current frame is projected from that of the object in the
previous frame, which may also be drawn from its previous
one.

4. Generative tracker using linear subspace

Although the use of multiple linear subspaces [29] pro-
duces good results in tracking, the ambiguity is high when



(a) Some partial occlusion cases at frame 28, 88, and 185

(b) Generative tracker model update

(c) Discriminative tracker model update

Figure 5. Occlusion recovery from our trackers (the image patch
is scaled to 32x32 for training)

deciding whether to create a new subspace and merge a pair
of existing ones or not. It is even more ambiguous when
partial occlusion appears. Some new subspaces may be cre-
ated, which do not reflect the correct appearance model of
the object. Also, more noise is included in the model by
encoding the appearance that way.

Here we propose to use a single linear subspace to ap-
proximate the appearance model of the object. This is
similar to the incremental visual tracker (IVT) by Ross et
al. [21], but with partial occlusion handling.

4.1. Online learning

In the initialization step, after collecting several sam-
ples by simple template matching, we train the model of
the object from those n training images Iini = {I1, ..., In}
by computing the eigenvectors U of the covariance matrix

1
n−1

∑n
i=1(Ii− Ī)(Ii− Ī)T , where = 1

n

∑n
i=1 Ii is the mean

of the training images. It can be solved by singular value de-
composition (SVD) P = UΣV T of the centered data ma-
trix [(I1 − Ī)...(In − Ī)]

Given new m images Iadd = {In+1...In+m}, the sub-
space needs to be incrementally updated by calculating
[P Q] where Q is the new observation matrix according to
Iadd. As the result of the derivation in [21], we have

[P Q] =
(
[U Q̃]Ũ

)
Σ̃

(

Ṽ T

[
V T 0
0 1

])

(11)

In which Q̃ is the component of Q orthogonal to U. Fi-
nally, we have U ′ = [U Q̃]Ũ and Σ′ = Σ̃ as the updated

eigensystem. In our implementation, for efficiency, the top
k eigenvectors (k = 10) are maintained to represent the
model of the learned object.

4.2. Evaluation

Given a subspace Ω with the first k eigenvectors, the
projection of a sample x on Ω is y = (y1, ..., ym)T =
UT (x − x̂). Then the likelihood of x can be expressed:

p(x|Ω) =








exp

(

− 1
2

k∑

i=1

y2
i

λi

)

(2π)k/2
k∏

i=1

λ
1/2
i







∙




exp

(
− ε2(x)

2ρ

)

(2πρ)(d−k)/2



 (12)

Where λi is the eigenvalue with respect to yi, d is the di-
mension of the input, ε(x) = |x − UUT x| is the projection
error. The parameter ρ = 1

d−k

∑d
i=k+1 λi, can be approxi-

mated as ρ = 1
2λk+1.

However, to detect partial occlusion, as discussed in Sec-
tion 2 and shown in Fig. 2(a), intuitively, the projection error
is split into blocks, the same way done in the discriminative
tracker. We simply compute the occlusion likelihood by us-
ing the projection error over each block.

These likelihood values are then normalized to generate
the occlusion likelihood map which is a binary image. The
0 value corresponds to the block having score lower 50% of
the maximum score block, and 1, otherwise.

4.3. Updating the model

To avoid modeling the occluding part when partial oc-
clusion occurs, instead of updating the whole image patch
as described in Section 4.1, we propose an algorithm to re-
cover the occluded part. Using the generative model, we
project the information encoded in the learned subspace
onto the occluded area to fill up the image patch (Figure 5)
and follow the online learning in Section 4.1.

5. Local features movement voting using KLT

Taking advantage of the simplicity and fast computation
of KLT features [22], tracking consistency is checked based
on the movement of these features in the object region at ev-
ery frame. Due to the discontinuity between non-occluded
and occluding regions, some KLT features are driven in the
same direction and velocity which are different from the re-
maining part. Taking account this observation, we propose
a voting scheme on the movement of these local features to
detect the occlusion.

After being detected in the first frame, these features are
tracked in every frame. After removing all of the outliers,
the magnitude displacement of each feature is then normal-
ized to [0,1] and encoded in a 4-bin histogram. The direc-
tion of the movement is encoded in a 8-bin histogram, each



(a) Frame 372 (b) Frame 373 (c) Generative (d) Discriminative

Figure 6. Disagreement in occlusion detection from the two track-
ers.

of which covers a π
4 span. All displacement vectors, thus,

accumulate into a 4x8 2D histogram.
Let R be the candidate occluded region voted by discrim-

inative and generative trackers, H = {hi,j} is the histogram
of all the KLT features in the current frame, H ′ = {h′

i,j}
is the histogram of the KLT features which was originally
in the current occluded region. Let Ĥ = H − H ′ be the
histogram of the non-occluded part. We have:

h′
max = argmax(h′

i,j) (13)

where h′
i,j ∈ H ′. Let us call h′

max = h′
imax,jmax

, the con-
dition for R to be considered as occluded part is

y =

{
1 if

h′
imax,jmax

himax,jmax
≥ θ

0 otherwise
(14)

This equation can be understood as a checking process
of local features uncertainty in the occluded region. When
there is a majority of KLT features in a region having dif-
ferent movement behavior than the rest, partial occlusion is
detected. In practice, we choose θ = 0.7. It is important to
note that the KLT features are re-initialized after occlusion
and this step is only applied as a referee when there is dis-
agreement on occlusion detection between the two genera-
tive and discriminative trackers. An example of occlusion
detection disagreement between these two trackers is shown
in Fig. 6. This disagreement is resolved with the use of KLT
feature occlusion detection serving as a referee.

6. Experiments

6.1. Implementation Details

To implement the generative and discriminative models,
depending on the size ratio of the object, we use an im-
age vector of size 32x32 for square-shape and 32x64 for
rectangle-shape. For the generative tracker, the subspace is
maintained by the top k=10 eigenvectors because it gives
us the best trade-off in precision and running time. Every 5
frames, we update the subspace once. For the discriminative
tracker, we use the linear kernel LASVM [5] with R-HOG
feature set [6] (16x16 block size and 8x8 cell size). To al-
low the overlapping HOG descriptor, we use the step size
of 8. For a block we have 36-bin oriented histogram. Be-
cause of the growth in number of support vectors, a sliding
window of 300 frames is applied to focus on the current ap-
pearance of the object. In the first frame, we manually select

the object and apply simple template matching for the next
4 frames. These initial labeled data are then transferred to
both generative and discriminative trackers for training. Our
Bayesian framework generates 600 particles at each frame.
The combined tracker is implemented in C++ and runs at
4fps on an Intel QuadCore 3.0GHz system. At every frame,
each of the trackers independently predicts the unlabeled
data based on its trained model. Following [29], in the dis-
criminative tracker, we also convert score of SVM to proba-
bility output [20] and follow the same threshold settings for
both trackers.

In the co-decision step to combine the two occlusion
likelihood maps, we simply use an AND operator to inte-
grate them into the final one. However, when there are more
than 70% of the pixels different between these two likeli-
hood maps, we use local features movement voting process
to choose the detector to rely on. In our experiments, it
happens mostly when there is local change causing false
occlusion detection by generative model.

6.2. Comparison

We tested our algorithm on several challenging pub-
lished video sequences of different types of objects in in-
door and outdoor environments. Several related state-of-
the-art trackers included in the comparison are the Co-
Tracker [29], which is the most related to our tracker, the
Frag-Tracker [1], the Online and Semi-Boosting Tracker
(OAB, SB) [8, 9], the P-N Tracker (PNT) [11], the MIL-
Tracker [3] and its new variation with no regret MIO
Tracker [14]. We use the provided results and pub-
lished source code from the authors1,2,3 . These methods
were also demonstrated on published benchmark video se-
quences for comparison. We also demonstrated the robust-
ness of our proposed partial occlusion handling co-training
framework by comparing our tracker with each component
without occlusion handling. For the MIL, MIO, OAB, SB
trackers, we use the settings described in the papers with
some optimized parameters in search range and number of
selectors. The parameters (except the search range) in Frag-
Tracker are kept as default. In the Co-Tracker and the two
components of our tracker, the parameters are set the same
as our tracker. To prove the precision of our tracker, we
used the same measurement, average center location errors
(in pixels), used for evaluation in [3, 14].

The testing sequences include five videos reported by
MILTracker and one video published in [30]. The ground
truth centers of every five frames are also provided by
Babenko et al.1. We also labeled the ground truth for the
new sequence in the same manner. The resolution of all
video frames is 320x240, except the Occluded Face which

1MILTracker: http://vision.ucsd.edu/ babenko/project miltrack.shtml
2Frag-Tracker: http://www.cs.technion.ac.il/ amita/fragtrack/fragtrack.htm
3Semi-boosting Tracker: http://www.vision.ee.ethz.ch/boostingTrackers/index.htm



Video Sequence Frames GT DT FT OAB ST PNT MILT MIO CoT Ours

Coke Can 292 102 9 67 25 85 8 21 22 10 8
Occluded Face 1 900 86 17 7 44 41 8 27 14 16 5
Occluded Face 2 808 14 12 21 21 43 8 20 13 12 7

Person 200 35 73 44 37 154 44 34 n/a 33 5
Tiger 1 354 52 6 40 35 46 13 15 24 5 4
Tiger 2 365 43 7 37 34 53 21 17 23 7 5

Table 1. Average center location errors. (GT: Generative Tracker, DT: Discriminative Tracker, FT: Frag-Tracker [1], OAB: Online Boosting
Tracker [8], ST: Semi-Boosting Tracker [9], PNT: P-N Tracker [11], MILT: MILTracker [3], MIO: MIL No Regret Tracker [14], CoT: Co-
Tracker [29] ) in different challenging datasets. The best performance is in bold, the second best is in italic.

(a) Occluded Face 1 (b) Occluded Face 2

(c) Person (d) Tiger 2

Figure 7. Some screen shots from the testing results. Because of clarity issue, we only choose Frag-Tracker [1] and MILTracker [3] to
show some results comparing with our tracker.

is 352x288. The quantitative comparison results, which are
presented in Table 1, clearly show the advantages of our
approach. “N/a” is reported when we do not have the re-
sults from that method. All of the other trackers cannot
adapt well to the object appearance changes including light-
ing change, pose change (occluded face 2) and fail when
total occlusion appears in seq. “person”. Also, our al-
gorithm helps to avoid drift shown by the lowest position
error compared to others in all sequences. All of the se-
quences provide long-term and heavy partial and total oc-
clusions, and challenging appearance changes such as il-
lumination changes, abrupt motion, rotation, and cluttered
backgrounds.

Occluded Face and Occluded Face 2: although the “Oc-
cluded Face” sequence contains many occlusion cases, the
object does not move much and is quite distinctive from
the background. However, it is a good example for us to
test our occlusion detection. Our tracker outperforms oth-
ers, especially Frag-Tracker, which is proposed to solve the
partial occlusion problem using a part-based model. The
“Occluded Face 2” is much more complicated, it contains
illumination change, in-plane rotation, and heavy occlusion.

Other trackers hardly get the precise position for the center
when occlusion and rotation happen while our tracker tracks
the face consistently with very good rotation.

Coke Can, Tiger, and Tiger2: These three sequences share
the same challenges: illumination changes, abrupt motion,
partial occlusion, and rotation changes. The generative
model is not very effective because of abrupt changes in
appearance, whereas the discriminative one obtains excel-
lent performance.

Person: This sequence was taken outdoor and contains to-
tal occlusion [30]. While Frag-Tracker is stuck at a similar
area in the background when the person rotates and MIL-
Tracker cannot handle the occlusion when another person
passes through our object, our tracker can re-initialize to
the target immediately after the total occlusion based on the
occlusion recovery information.

Please refer to our supplemental video for the details.

7. Conclusions and future work

We have proposed a novel co-training framework of gen-
erative and discriminative trackers with partial occlusion
handling. Our algorithm can encode the global appearance



model of the object in a compact linear subspace while
strengthening the discriminative power to separate the ob-
ject and background. The co-decision process for occlusion
handling, with the help of the local features movement vot-
ing process, robustly detects the occluded region and helps
the trackers ignore that region and update the new model
consistently. Moreover, the co-training framework helps the
two trackers update each other on-the-fly, which is espe-
cially helpful when each of them fails during tracking.

Currently, our tracker cannot handle the case when there
is an abrupt change during the occlusion because there is no
learned knowledge to predict the changes in the hidden re-
gion according to the revealed one. In the future, we expect
to build a learning algorithm to cope with this issue. We
also expect to develop specific trackers for different types
of objects such as face, people, and vehicle whose model
can be learned offline.
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